Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Topics in Antiviral Medicine ; 31(2):337-338, 2023.
Artículo en Inglés | EMBASE | ID: covidwho-2320458

RESUMEN

Background: In 2018 we reported the emergence of the new HIV-1 recombinant CRF94-02BF2 involved in a large transmission cluster of 49 French MSM mostly infected in 2016-2017. This CRF94 raised concerns of enhanced virulence. Prevention actions were undertaken in the area and population affected. This study reported the molecular and epidemiological evolution of this CRF94 until June 2022. Method(s): In 2021-2022, French sequence databases were screened for patients infected with HIV-1 subtype CRF94 or similar strain. HIV subtyping was confirmed by phylogenetic analysis of genes encoding both protease and reverse transcriptase (1070bps), and integrase (696bps) using IQ-Tree. Five whole genomes, related but distinct from CRF94, were obtained with the DeepChek assay Whole Genome kits. Recombination breakpoints were estimated using RDP4 and SimPlot. Mann-Whitney and LogRank tests were used for statistical analyses to compare patients' characteristics. Result(s): In June 2022, 49 new HIV-1 sequences were collected: 14 clustered with the 49 previous CRF94, 32 formed a new cluster next to but distinct from CRF94, and 3 strains could not be classified. Analysis of 5 whole genomes from the new cluster revealed a new recombinant, the CRF132-94B, mainly consisting of CRF94 which recombined with subtype B in the POL and accessory genes. Vif gene changed from the F2 to the B subtype. Both CRF94 and 132 clusters involved >95% of MSM, mostly infected < 1 year before diagnosis. However, there were differences: 97% were diagnosed in 2013-2019 for CRF94 vs 90% in 2020-2022 for CRF132. At time of diagnosis, 33% of patients infected with CRF94 knew the Prep vs 95% for CRF132. In the cluster CRF94, patients were older (34 vs 30 years, p=0.02), had higher viral loads (5.42 vs 4.42 log10 copies/Ml;p< 0.001), a lower CD4 cell counts (358 vs 508 /mm3, p=0.002). On treatment, the patients with the CRF94 reached viremia < 50 copies/Ml significantly later than those infected with CRF132 (p=0.0002). The prevention activities targeting the CRF94 cluster could explained the few patients infected with this strain after 2018. The CRF132 is mainly located in another Paris region area, but no specific transmission place has been identified. Conclusion(s): After 2019, the CRF94 spread seems greatly slowed down but the very close CRF132-94B has given birth to a new highly active cluster in 2020- 2022, despite the COVID social-distancing and a strong knowledge of the Prep. CRF132 appears to be less virulent perhaps due to the Vif gene change. Identified breakpoints positions of the new HIV-1 CRF132-94B. GenBank accession numbers of the five references : ON901787 to ON901791.

2.
Peer Community Journal ; 1(e45), 2021.
Artículo en Inglés | CAB Abstracts | ID: covidwho-1893604

RESUMEN

France was one of the first countries to be reached by the COVID-19 pandemic. Here, we analyse 196 SARS-Cov-2 genomes collected between Jan 24 and Mar 24 2020, and perform a phylodynamics analysis. In particular, we analyse the doubling time, reproduction number (Rt) and infection duration associated with the epidemic wave that was detected in incidence data starting from Feb 27. Different models suggest a slowing down of the epidemic in Mar, which would be consistent with the implementation of the national lock-down on Mar 17. The inferred distributions for the effective infection duration and Rt are in line with those estimated from contact tracing data. Finally, based on the available sequence data, we estimate that the French epidemic wave originated between mid-Jan and early Feb. Overall, this analysis shows the potential to use sequence genomic data to inform public health decisions in an epidemic crisis context and calls for further analyses with denser sampling.

3.
Clinical Chemistry ; 67(5):736-741, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1208479

RESUMEN

BACKGROUND: Reverse transcription-quantitative PCR on nasopharyngeal swabs is currently the reference COVID-19 diagnosis method but exhibits imperfect sensitivity. METHODS: We developed a multiplex reverse transcription-digital droplet PCR (RT-ddPCR) assay, targeting 6 SARS-CoV-2 genomic regions, and evaluated it on nasopharyngeal swabs and saliva samples collected from 130 COVID-19 positive or negative ambulatory individuals, who presented symptoms suggestive of mild or moderate SARS-CoV2 infection. RESULTS: For the nasopharyngeal swab samples, the results obtained using the 6-plex RT-ddPCR and RT-qPCR assays were all concordant. The 6-plex RT-ddPCR assay was more sensitive than RT-qPCR (85% versus 62%) on saliva samples from patients with positive nasopharyngeal swabs. CONCLUSION: Multiplex RT-ddPCR represents an alternative and complementary tool for the diagnosis of COVID-19, in particular to control RT-qPCR ambiguous results. It can also be applied to saliva for repetitive sampling and testing individuals for whom nasopharyngeal swabbing is not possible.

4.
Rev Mal Respir ; 38(1): 58-73, 2021 Jan.
Artículo en Francés | MEDLINE | ID: covidwho-1036230

RESUMEN

INTRODUCTION: The etiological diagnosis of bronchopulmonary infections cannot be assessed with clinical, radiological and epidemiological data alone. Viruses have been demonstrated to cause a large proportion of these infections, both in children and adults. BACKGROUND: The diagnosis of viral bronchopulmonary infections is based on the analysis of secretions, collected from the lower respiratory tract when possible, by techniques that detect either influenza and respiratory syncytial viruses, or a large panel of viruses that can be responsible for respiratory disease. The latter, called multiplex PCR assays, allow a syndromic approach to respiratory infection. Their high cost for the laboratory raises the question of their place in the management of patients in terms of antibiotic economy and isolation. In the absence of clear recommendations, the strategy and equipment are very unevenly distributed in France. OUTLOOK: Medico-economic analyses need to be performed in France to evaluate the place of these tests in the management of patients. The evaluation of the role of the different viruses often detected in co-infection, especially in children, also deserves the attention of virologists and clinicians. CONCLUSIONS: The availability of new diagnostic technologies, the recent emergence of SARS-CoV-2, together with the availability of new antiviral drugs are likely to impact future recommendations for the management of viral bronchopulmonary infections.


Asunto(s)
Infecciones del Sistema Respiratorio/diagnóstico , Infecciones del Sistema Respiratorio/virología , Virosis/diagnóstico , Antígenos Virales/análisis , Líquido del Lavado Bronquioalveolar/virología , Coinfección/diagnóstico , Técnica del Anticuerpo Fluorescente , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Nasofaringe/virología , Reacción en Cadena de la Polimerasa , Vigilancia de la Población , Manejo de Especímenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA